Square Root Using Long Division


 
 
Concept Explanation
 

Square Root Using Long Division

When the square numbers are very large, the method of finding their square roots by prime factorization becomes very lengthy and difficult also. In such cases, we use the method of long division to find the square root. We follow the following step wise procedure to find the square root of squares by the long division method.

Procedure:

STEP I  Obtain the number whose square root is to be computed.

STEP II Place bars over every pair of digits starting with the units digit. Also, place a bar on one digit (if any) not forming a pair on the extreme left. Each pair and the remaining one digit (if any) on the extreme left is called a period.

STEP III  Think of the largest number whose square is less than or equal to the first period. Take this number as the divisor and the quotient.

STEP IV  Put the quotient above the period and write the product of divisor and quotient just below the first period.

STEP V SUbtract the product of divisor and quotient from the first period and bring down the next period to the right of the remainder. This becomes the new dividend.

STEP VI  Double the quotient as it appears and enters it with a blank on the right for the next digit, as the next possible divisor.

STEP VII  Think of a digit, to fill the blank in step VI, in such a way that the product of the new divisor and this digit is equal to or just less than the new dividend obtained in step V.

STEP VIII  Subtract the product of the digit chosen in step VII and the new divisor from the dividend obtained in step V and bring down the next period to the right of the remainder. This becomes a new dividend.

STEP IX Repeat steps, VI, VII, and VIII till all periods have been taken up.

STEP X  Obtain the quotient as the square root of the given number.

The following illustration will illustrate the above procedure.

Illustration: Find the square root of 4937284 by the long division method.

(i) 4937284

SOLUTION  

.... (More Text Available, Login?)
Sample Questions
(More Questions for each concept available in Login)
Question : 1

 Find the divisor at the second stage in the square root of 676 while calculating its square root using the method of long division.

Right Option : A
View Explanation
Explanation
Question : 2

A general arranges his soldiers in rows to form a perfect square . He finds that in doing so,60 soldiers are left out.if the total number of soldiers be 8160, find the number of soldiers in each row.

Right Option : B
View Explanation
Explanation
Question : 3

 Find the divisor at the second stage in the square root of 7569 while calculating its square root using the method of long division.

Right Option : B
View Explanation
Explanation
 
 


Students / Parents Reviews [10]